Millimeter Wave Integrated Antenna Arrays On LTCC

Goals and Objectives:

Design, in house LTCC fabrication and characterization of Fully Integrated On-Chip Interferometric Arrays operating at 94 GHz.

Features :

- Compact form \geq factor
- Can be \geq integrated in array format
- Can be packaged \geq to form a System-On-Chip
- \geq Improve resolution for Radar and Imaging systems
- \succ Microstrip or **GCPW** feeding

Design Plan

mmWave Probe Station **Operational up to 115 GHz**

Millimeter-Wave Camera

Operation:

- Received RF/mm-wave signal is converted to optical via an integrated EO modulator
- Simple IR lens camera performs spatial Fourier Transform for image acquisition

Imager Consists of:

- Sparse Antenna Arrays
- EO modulator per array element
- Optical filters
- Photo detector array

Features:

- Passive imager operating at 94 GHz
- Integrated sparse interferometric array of unit pixels
- Antenna integrated 94GHz EO modulator
- Make use of off-the-shelf NIR camera

mm-Wave Camera System

Challenges :

- Efficiency of 94 GHz EO modulator design
- Optimum sparse array design algorithm
- Camera system integration